Резистор для кулера 12 вольт

Блог компьютерщика

Все, чем занимаюсь на работе: компьютеры, автоматизация, контроллеры, программирование и т.д.

четверг, 17 сентября 2015 г.

Уменьшение оборотов вентилятора с помощью резистора

В очередной материнской плате с сокетом 775 сильно грелся южный мост. Размеры радиатора ЮМ меньше 40×40 мм и пластиковые крепления торчат выше его плоскости. Поэтому стандартный 40-миллиметровый вентилятор прикрепить прямо на радиатор невозможно. Пришлось закрепить 40-мм вентилятор на корпус системного блока через самодельные крепления из жестяных заглушек.

Проблема в том, что дешевый втулочный вентилятор, хотя и абсолютно новый, сильно гудел. Причина оказалась в вибрации, которую вентилятор передавал на ножки крепления. Чтобы вентилятор гудел по-меньше, я понизил его обороты через резистор:

Это помогло: оборотов стало меньше, вибрация понизилась и гудения больше нет. Поток воздуха на радиатор, конечно, тоже уменьшился, но его еще достаточно для нормального охлаждения- при работе радиатор чуть тёплый.

Надо сказать, что рекомендуемым способом понижения оборотов вентилятора в ПК является ШИМ-регулирование, когда постоянное напряжение 12 В подают на вентилятор не постоянно, а импульсами. Уменьшение оборотов через резистор не является рекомендуемым способом, но намного проще и при этом работает. При включении вентилятора через резистор, в отличии от ШИМ, вместо стандартного напряжения в 12 В на него приходит меньшее напряжение. Уменьшили напряжение- уменьшилась скорость вращения.

Для начала удостоверимся, что понижение напряжения допустимо для нашей модели. Например, мой вентилятор SENSDAR SD4010M1S работает при напряжениях 6-13.8 В:

Опытным путем я подобрал резистор 56 Ом, 1 Вт:

При таком сопротивлении резистора на вентилятор приходит напряжение не 12.3 В(столько по линии 12 В выдает данный блок питания при включенной материнской плате), а 8.3 В. Напряжения оказалось достаточно для уменьшения скорости вращения вентилятора при необходимом уровне охлаждения радиатора ЮМ. Резистор я выбрал с рассеиваемой мощностью 1 Вт, т.к. вентилятор потребляет 12 В * 0.08 А= 0.96 Вт. Если для моего вентилятора выбрать менее мощный резистор, то резистор просто перегорит. Во время работы компьютера резистор теплый, но не слишком. Значит, всё ок. Но рекомендую ставить резистор на 2 Вт, на всякий случай.

Не забываем надежно изолировать места пайки провода и резистора(на фото- белые резиновые трубки), а то замкнет на корпус и будет пожар. Сам керамический корпус резистора является изолятором и не проводит электричество, его боятся не надо.

Источник: www.comp-man.info

Undocumented: способы снижения оборотов вентиляторов

Мы уже не раз на страницах журнала “Компьютерра” и сайта Ferra.ru обращались к теме шума компьютера вообще и снижения шума вентиляторов и кулеров в частности (см., например, “КТ” #381, www.ferra.ru/online/supply/5961, www.ferra.ru/online/supply/9668 и www.ferra.ru/online/supply/20793). Предлагаем вашему вниманию еще один краткий взгляд на эту проблему.

Помнится, в конце 1980-х один мой приятель жаловался, что его «Спектрум» не дает спать соседям: шаговый двигатель пятидюймового флоппи-дисковода, лежащего на столе (а где вы тогда видели «Спектрум» в корпусе?), входил в резонанс с этим самым столом и был слышен этажом ниже ничуть не хуже электродрели.

Позже уже мои соседи наслаждались воем подшипников пятидюймового двадцатимегабайтного винчестера Seagate, и его приходилось укутывать в два слоя пористой резины. Сейчас времена не те, основные компоненты компьютеров стали «тише воды, ниже травы», но для людей, работающих ночами, особенно когда остальные члены семьи уже спят, шум компьютера, как и раньше, выходит на первое место. Приходится выбирать «мягкую» клавиатуру, переключать винчестеры в Acoustic mode в ущерб производительности (звук головок, кстати, бывает очень разным: на мой изощренный слух сухой «треск» дисков от IBM или Maxtor значительно приятнее, например, «консервной банки» Seagate U-серии, но в «тихом» режиме все они практически беззвучны), воздерживаться от установки пиратских CD-ROM с огромным эксцентриситетом.

Впрочем, есть компоненты, с шумом которых приходится мириться, — это вентиляторы. Обычно их два: в блоке питания и на процессоре. И тот и другой можно заменить более тихими, но, если для процессорных кулеров можно найти хоть какие-то результаты тестов с указанием шумности, то вентилятор блока питания приходится выбирать «на глаз» или путем перебора вариантов. Единственное, что может помочь, — указанная на этикетке мощность: чем она выше, тем производительнее и, соответственно, шумнее вентилятор («на глаз» могу отметить лишь, что прямые «рубленые» лопасти издают больше шума, нежели гнутые серповидные).

В большинстве случаев создаваемый вентилятором процессорного кулера воздушный поток избыточен, особенно учитывая, что он циркулирует в замкнутом пространстве корпуса. Воздух, продуваемый через ребра радиатора, просто не успевает нагреваться. Гораздо большее значение имеет площадь поверхности и материал радиатора, плотность прилегания к кристаллу, а также температура внутри корпуса (вернее, разность температуры радиатора и воздуха); обороты же вентилятора зачастую можно снизить вдвое, при этом температура процессора возрастет лишь на вполне безопасные 3–5 градусов.

С вентиляторами блоков питания дело обстоит сложнее. Вопреки распространенному мнению, вентилятор этот охлаждает не только и не столько блок питания, сколько обеспечивает циркуляцию воздуха внутри корпуса (обычно в корпусах ATX блок питания размещен сверху, и вентилятор работает на вытяжку), которая сильно влияет на эффективность работы процессорного кулера. Здесь вмешивается еще и сам корпус: его объем и высота, размещение блока питания, наличие и расположение вентиляционных отверстий. Обладателям мощных процессоров, желающим снизить шум вентилятора блока питания, могу рекомендовать снижать его обороты, компенсируя воздушный поток установкой в нижней части корпуса дополнительного нагнетающего вентилятора (его тоже можно не «крутить на всю катушку»).

Теперь перейдем к способам снижения оборотов вентиляторов.

Один из самых простых — переключение на пониженное напряжение питания. Штатно все вентиляторы запитаны от 12 В, но большинство вполне работоспособно и при питании 5 В. Для процессорного кулера достаточно лишь извлечь наконечник среднего провода (обычно красный) из трехконтактного вентиляторного разъема и вставить его в 5-вольтовое гнездо свободной «фишки» питания (тоже красный провод). В блоке питания — перепаять красный провод вентилятора со штатного места на выход 5 В (опять же красные силовые провода). Работоспособность схемы контроля оборотов при этом сохраняется. Шум падает почти до нуля, впрочем, и обороты снижаются слишком сильно, поэтому способ годится разве что для маломощных систем.

Лучшие результаты дает переключение питания на 7 В. Надеюсь, читатели уже догадались: это разность между 5- и 12-вольтовым питанием. Выполняется аналогично первому варианту, за исключением того, что к 5-вольтовому питанию подключается не красный, а черный провод вентилятора. Недостаток — перестает работать схема контроля оборотов.

Более грамотное решение — снижение тока с помощью резистора, включенного в разрыв провода питания вентилятора. Номинал зависит от мощности вентилятора и степени снижения оборотов; для типовых кулеров применимы резисторы от 10 до 75 Ом мощностью 0,25 Вт. Подобный способ применяется не только на любительском уровне: промышленно выпускаются переходники (на фото); обычно там используется резистор 10 Ом, который снижает обороты незначительно. Недостаток такого решения — сильное ограничение пускового тока вентилятора. В один прекрасный момент забившийся пылью подшипник может не позволить ротору сдвинуться с места.

Самое же корректное, на мой взгляд, решение — включение в разрыв цепи питания вентилятора стабилитрона с напряжением стабилизации 3–6 В. Подбором типа стабилитрона можно выбрать нужные обороты, при этом сохраняется и большой пусковой ток, и работоспособность схемы контроля оборотов.

Читайте также:  Скол на стекле авто

Используя подобные решения, не забывайте о программах мониторинга, контролирующих вентиляторы. Если монитор системной платы плохо совместим с низкооборотным вентилятором, обновите BIOS: большинство производителей добавили в последнее время поддержку низкооборотных кулеров.

Напоследок расскажу одну историю. Месяц назад, покупая самый дешевый привод CD-RW, я спросил продавца: что взять при равной цене — NEC или Mitsumi? И без всяких наводящих вопросов получил ответ: конечно же, Mitsumi — он тише, а скорость… да что тебе скорость?

Источник: www.ferra.ru

Как сделать простой регулятор оборотов, скорости вращения для компьютерного вентилятора, кулера, маломощного электродвигателя постоянного тока.

Компьютерные вентиляторы могут быть полезны не только внутри компьютера. Допустим я использую такой вентилятор (размерами 120 на 120 мм, 12 В и 350 мА) для быстрой разморозки своего мини холодильника, а также его вполне хватает для проветривания небольшого помещения, после того как надымил паяльником. Хотя когда такие вентиляторы питаешь от их стандартного напряжения 12 вольт они издают относительно большой шум. Да и не всегда нужны их максимальные обороты вращения. Порой данного кулера хватает и при пониженной мощности. Но чтобы это сделать нам понадобится весьма простая схема (что приведена ниже на рисунке), которая позволит регулировать частоту вращения, его скорость, обороты.

Для бывалых электронщиков и радиотехников эта простая схема ясна и понятна, так что буду пояснять ее работы, принцип действия для новичков. Одно дело когда собрал схему, включил, и пусть себе работает. Другое же дело, когда знаешь как она функционирует, и при желании можно ввести свои какие-нибудь изменения и дополнения к имеющейся схеме.

Итак, сама схема регулятора оборотов компьютерного вентилятора состоит всего из трех деталей, а именно это биполярный транзистор типа КТ817 с любым буквенным индексом, переменного резистора на 1 килоом и постоянного резистора, который желательно подобрать наиболее подходящий. Транзистор включен по схеме с общим коллектором (называемым также эмиттерным повторителем), а это значит что он усиливает только ток, при том усиления по напряжению не происходит.

Между коллектором и эмиттером стоит делитель напряжения, состоящий из двух резисторов (переменного и постоянного). Как известно, биполярный транзистор имеет три вывода, это эмиттер, коллектор и база. Переход между базой и эмиттером считается управляющим, а переход между коллектором и эмиттером считается силовым. Так вот, в изначальном состоянии (когда никакого напряжения к схеме не приложено) переход коллектор-эмиттер закрыт, он через себя ток не пропускает, его проводимость в этом состоянии имеет бесконечно большое значение (проще говоря имеет бесконечно большое сопротивление). Но вот когда мы на управляющий переход подадим напряжение более 0,6 вольт, этот силовой переход (коллектор-эмиттер) постепенно начинает открываться. И чем больше мы пропустим тока через управляющий переход, тем больше тока сможет пройти через силовой переход.

Именно от переменного резистора R1 зависит будет ли силовой переход закрыт (при этом вентилятор вращаться не будет) или же будет он полностью открыт (при этом кулер будет иметь максимальные обороты своего вращения). Естественно, чем больше мы выкрутим ручку переменного резистора, тем сильнее или медленнее будет вращаться наш компьютерный вентилятор (в зависимости в какую сторону мы будем вращать ручку). Но зачем нужен еще одни постоянные резистор R2 ? Дело в том что у переменного резистора имеется некоторая «мертвая зона», находясь в которой вращение ручки не на что не будет влиять (кулер будет стоять на месте). Это происходит из-за того, что транзистор начинает открываться только при напряжении более 0,6 вольт. До этого напряжения с транзистором ничего не происходит.

И вот чтобы напряжение от 0 до 0,6 вольт убрать с переменного резистора мы и вводим в схему постоянный резистор. Именно он возьмет на себя это самое низкое напряжение «мертвой зоны». В итоге переменный резистор будет работать от максимальных оборотов вентилятора до минимальных. Постоянный резистор R2 нужно подбирать. Лучше вначале вместо него поставить подстроечный резистор с сопротивлением около 470 ом. После того как мы подберем нужное сопротивление «мертвой зоны» можно будет ставить и постоянный, до этого подобранным сопротивлением. Оно будет примерно около 100-300 ом.

Что касается самого транзистора. В этой схеме я поставил КТ817. У него максимальный ток, который может пройти через коллекторно-эмиттерный переход равен до 3 ампер. Рассеиваемая мощность без радиатора до 1 ватта, а с наличием охлаждающего радиатора эта мощность уже увеличивается аж до 25 ватт. Можно поставить любой другой биполярный транзистор с n-p-n проводимостью, у которого ток коллектор-эмиттер будет больше того, что будет проходит при использовании конкретного вентилятора. Ну, и рассеиваемая мощность должна быть не меньше той, что будет выделяться при конкретном вентиляторе.

Ну, а сама схема работает достаточно просто. Когда мы крутим ручку переменного резистора в сторону уменьшения оборотов вентилятора, то лишнее напряжение отводится на эту транзисторную схему. Проще говоря, лишнюю электрическую мощность на себя забирает эта схема, превращая ее в тепло, которое рассеивается на транзисторе и радиаторе. К сожалению, это является недостатком данной схемы. Ведь при этом не о какой экономии электроэнергии говорить не приходится. Если это для вас важно, то тогда нужно использовать схемы понижающих DC-DC преобразователей, у который с экономией дело обстоит гораздо лучше.

Видео по этой теме:

P.S. Несмотря на простоту этой схемы она действительно способна вполне линейно регулировать частоту вращения компьютерного вентилятора. Хотя к ней можно подключать не только кулер от компа, с маломощными электродвигателями постоянного тока, рассчитанных на напряжение 12 вольт, она также вполне способна работать. Хотя и напряжение 12 вольт не является ограничением, схема будет работать и при больших напряжениях.

Рекомендуемый материал

Куда далее перейти на этом сайте ⇙

Источник: electrohobby.ru

3 лучшие схемы регуляторов скорости вентиляторов

  1. Простая схема
  2. С датчиком температуры
  3. Для уменьшения шума
  4. Видео

Рассмотрим ТОП-3 рабочих схемы регулятора скорости вращения вентилятора. Каждая схема не только проверена, но и отлично подойдёт для воплощения начинающими радиолюбителями. К каждой схеме прилагается список необходимых компонентов для монтажа своими руками и пошаговые рекомендации.

Регулятор скорости вентилятора — простая схема

Предлагаемая ниже схема обеспечивает простую регулировку оборотов вентилятора без контроля оборотов. В устройстве использованы отечественные транзисторы КТ361 и КТ814. Конструктивно плата размещается непосредственно в блоке питания, на одном из радиаторов. Она имеет дополнительные посадочные места для подключения второго датчика (внешнего) и возможность добавить стабилитрон, ограничивающий минимальное напряжение, подаваемое на вентилятор.

Список необходимых радиоэлементов:

  • 2 биполярных транзистора — КТ361А и КТ814А.
  • Стабилитрон — 1N4736A (6.8В).
  • Диод.
  • Электролитический конденсатор — 10 мкФ.
  • 8 резисторов — 1х300 Ом, 1х1 кОм, 1х560 Ом, 2х68 кОм, 1х2 кОм, 1х1 кОм, 1х1 МОм.
  • Терморезистор — 10 кОм
  • Вентилятор.

Плата регулятора скорости вентилятора:

Фото готового регулятора скорости вентилятора:

Регулятор вентилятора с датчиком температуры

Как известно, вентилятор в блоках питания компьютеров формата AT вращается с неизменной частотой независимо от температуры корпусов высоковольтных транзисторов. Однако блок питания не всегда отдает в нагрузку максимальную мощность. Пик потребляемой мощности приходится на момент включения компьютера, а следующие максимумы — на время интенсивного дискового обмена.

  • Как сделать управляемую плату регулятора на 1,2–35 В
Читайте также:  Разрешено ли вам повернуть направо

Если же учесть ещё и тот факт, что мощность блока питания обычно выбирается с запасом даже для максимума энергопотребления, нетрудно прийти к выводу, что большую часть времени он недогружен и принудительное охлаждение теплоотвода высоковольтных транзисторов чрезмерно. Иными словами, вентилятор впустую перекачивает кубометры воздуха, создавая при этом довольно сильный шум и засасывая пыль внутрь корпуса.

Уменьшить износ вентилятора и снизить общий уровень шума, создаваемого компьютером можно, применив автоматический регулятор частоты вращения вентилятора, схема которого показана на рисунке. Датчиком температуры служат германиевые диоды VD1–VD4, включенные в обратном направлении в цепь базы составного транзистора VT1VT2. Выбор в качестве датчика диодов обусловлен тем, что зависимость обратного тока от температуры имеет более выраженный характер, чем аналогичная зависимость сопротивления терморезисторов. Кроме того, стеклянный корпус указанных диодов позволяет обойтись без каких-либо диэлектрических прокладок при установке на теплоотводе транзисторов блока питания.

  • 2 биполярных транзистора (VT1, VT2) — КТ315Б и КТ815А соответственно.
  • 4 диода (VD1-VD4) — Д9Б.
  • 2 резистора (R1, R2) — 2 кОм и 75 кОм (подбор) соответственно.
  • Вентилятор (M1).

Резистор R1 исключает возможность выхода из строя транзисторов VT1, VT2 в случае теплового пробоя диодов (например, при заклинивании электродвигателя вентилятора). Его сопротивление выбирают, исходя из предельно допустимого значения тока базы VT1. Резистор R2 определяет порог срабатывания регулятора.

Следует отметить, что число диодов датчика температуры зависит от статического коэффициента передачи тока составного транзистора VT1, VT2. Если при указанном на схеме сопротивлении резистора R2, комнатной температуре и включенном питании крыльчатка вентилятора неподвижна, число диодов следует увеличить.

Необходимо добиться того, чтобы после подачи напряжения питания она уверенно начинала вращаться с небольшой частотой. Естественно, если при четырех диодах датчика частота вращения окажется значительно больше требуемой, число диодов следует уменьшить.

Устройство монтируют в корпусе блока питания. Одноименные выводы диодов VD1-VD4 спаивают вместе, расположив их корпусы в одной плоскости вплотную друг к другу. Полученный блок приклеивают клеем БФ-2 (или любым другим термостойким, например, эпоксидным) к теплоотводу высоковольтных транзисторов с обратной стороны. Транзистор VT2 с припаянными к его выводам резисторами R1, R2 и транзистором VT1 устанавливают выводом эмиттера в отверстие «-cooler» платы блока питания.

Налаживание устройства сводится к подбору резистора R2. Временно заменив его переменным (100–150 кОм), подбирают такое сопротивление введенной части, чтобы при номинальной нагрузке (теплоотводы транзисторов блока питания теплые наощупь) вентилятор вращался с небольшой частотой. Во избежание поражения электрическим током (теплоотводы находятся под высоким напряжением!) «измерять» температуру наощупь можно, только выключив компьютер. При правильно отлаженном устройстве вентилятор должен запускаться не сразу после включения компьютера, а спустя 2–3 мин после прогрева транзисторов блока питания.

Схема регулятора скорости вентилятора для уменьшения шума

В отличии от схемы, которая замедляет обороты вентилятора после старта (для уверенного запуска вентилятора), данная схема позволит увеличить эффективность работы вентилятора путем увеличения оборотов при повышении температуры датчика. Схема также позволяет уменьшить шум вентилятора и продлить его срок службы.

Необходимые для сборки детали:

  • Биполярный транзистор (VT1) — КТ815А.
  • Электролитический конденсатор (С1) — 200 мкФ/16В.
  • Переменный резистор (R1) — Rt/5.
  • Терморезистор (Rt) — 10–30 кОм.
  • Резистор (R2) — 3–5 кОм (1 Вт).

Настройка производится до закрепления термодатчика на радиаторе. Вращая R1, добиваемся, чтобы вентилятор остановился. Затем, вращая в обратную сторону, заставляем его гарантированно запускаться при зажимании терморезистора между пальцами (36 градусов).

Если ваш вентилятор иногда не запускается даже при сильном нагреве (паяльник поднести), то нужно добавить цепочку С1, R2. Тогда R1 выставляем так, чтобы вентилятор гарантированно запускался при подаче напряжения на холодный блок питания. Через несколько секунд после заpяда конденсатора, обороты падали, но полностью вентилятор не останавливался. Теперь закрепляем датчик и проверяем, как все это будет крутится пpи реальной работе.

Rt — любой терморезистор с отрицательным ТКЕ, например, ММТ1 номиналом 10–30 кОм. Терморезистор крепится (приклеивается) через тонкую изолирующую прокладку (лучше слюдяную) к радиатору высоковольтных транзисторов (или к одному из них).

Видео о сборке регулятора оборотов вентилятора:


Источник: tehnoobzor.com

Регулятор оборотов двигателя постоянного тока 12 вольт

На простых механизмах удобно устанавливать аналоговые регуляторы тока. К примеру, они могут изменить скорость вращения вала мотора. С технической стороны выполнить такой регулятор просто (потребуется установка одного транзистора). Применим для регулировки независимой скорости моторов в робототехнике и источниках питания. Наиболее распространены два варианта регуляторов: одноканальные и двухканальные.

Видео №1 . Одноканальный регулятор в работе. Меняет скорость кручения вала мотора посредством вращения ручки переменного резистора.

Видео №2. Увеличение скорости кручения вала мотора при работе одноканального регулятора. Рост числа оборотов от минимального до максимального значения при вращении ручки переменного резистора.

Видео №3 . Двухканальный регулятор в работе. Независимая установка скорости кручения валов моторов на базе подстроечных резисторов.

Видео №4. Напряжение на выходе регулятора измерено цифровым мультиметром. Полученное значение равно напряжению батарейки, от которого отняли 0,6 вольт (разница возникает из-за падения напряжения на переходе транзистора). При использовании батарейки в 9,55 вольт, фиксируется изменение от 0 до 8,9 вольт.

Функции и основные характеристики

Ток нагрузки одноканального (фото. 1) и двухканального (фото. 2) регуляторов не превышает 1,5 А. Поэтому для повышения нагрузочной способности производят замену транзистора КТ815А на КТ972А. Нумерация выводов для этих транзисторов совпадает (э-к-б). Но модель КТ972А работоспособна с токами до 4А.

Одноканальный регулятор для мотора

Устройство управляет одним мотором, питание осуществляется от напряжения в диапазоне от 2 до 12 вольт.

Конструкция устройства

Основные элементы конструкции регулятора представлены на фото. 3. Устройство состоит из пяти компонентов: два резистор переменного сопротивления с сопротивлением 10 кОм (№1) и 1 кОм (№2), транзистор модели КТ815А (№3), пара двухсекционных винтовых клеммника на выход для подключения мотора (№4) и вход для подключения батарейки (№5).

Примечание 1. Установка винтовых клеммников не обязательна. С помощью тонкого монтажного многожильного провода можно подключить мотор и источник питания напрямую.

Принцип работы

Порядок работы регулятора мотора описывает электросхема (рис. 1). С учетом полярности на разъем ХТ1 подают постоянное напряжение. Лампочку или мотор подключают к разъему ХТ2. На входе включают переменный резистор R1, вращение его ручки изменяет потенциал на среднем выходе в противовес минусу батарейки. Через токоограничитель R2 произведено подключение среднего выхода к базовому выводу транзистора VT1. При этом транзистор включен по схеме регулярного тока. Положительный потенциал на базовом выходе увеличивается при перемещении вверх среднего вывода от плавного вращения ручки переменного резистора. Происходит увеличение тока, которое обусловлено снижением сопротивления перехода коллектор-эмитттер в транзисторе VT1. Потенциал будет уменьшаться, если ситуация будет обратной.

Принципиальная электрическая схема

Материалы и детали

Необходима печатная плата размером 20х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита (допустимая толщина 1-1,5 мм). В таблице 1 приведен список радиокомпонентов.

Читайте также:  Почему сцепление в самом начале

Примечание 2. Необходимый для устройства переменный резистор может быть любого производства, важно соблюсти для него значения сопротивления тока указанные в таблице 1.

Примечание 3. Для регулировки токов выше 1,5А транзистор КТ815Г заменяют на более мощный КТ972А (с максимальным током 4А). При этом рисунок печатной платы менять не требуется, так как распределение выводов у обоих транзисторов идентично.

Процесс сборки

Для дальнейшей работы нужно скачать архивный файл, размещенный в конце статьи, разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора (файл termo1), а монтажный чертеж (файл montag1) – на белом листе офисной (формат А4).

Далее чертеж монтажной платы (№1 на фото. 4) наклеивают к токоведущим дорожкам на противоположной стороне печатной платы (№2 на фото. 4). Необходимо сделать отверстия (№3 на фото. 14) на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпадать. На фото.5 показана цоколёвка транзистора КТ815.

Вход и выход клеммников-разъемов маркируют белым цветом . Через клипсу к клеммнику подключается источник напряжения. Полностью собранный одноканальный регулятор отображен на фото. Источник питания (батарея 9 вольт) подключается на финальном этапе сборки. Теперь можно регулировать скорость вращения вала с помощью мотора, для этого нужно плавно вращать ручку регулировки переменного резистора.

Для тестирования устройства необходимо из архива распечатать чертеж диска. Далее нужно наклеить этот чертеж (№1) на плотную и тонкую картонную бумагу (№2 ). Затем с помощью ножниц вырезается диск (№3).

Полученную заготовку переворачивают (№1 ) и к центру крепят квадрат черной изоленты (№2) для лучшего сцепления поверхности вала мотора с диском. Нужно сделать отверстие (№3) как указано на изображении. Затем диск устанавливают на вал мотора и можно приступать к испытаниям. Одноканальный регулятор мотора готов!

Двухканальный регулятор для мотора

Используется для независимого управления парой моторов одновременно. Питание осуществляется от напряжения в диапазоне от 2 до 12 вольт. Ток нагрузки рассчитан до 1,5А на каждый канал.

Конструкция устройства

Основные компоненты конструкции представлены на фото.10 и включают: два подстроечных резистора для регулировки 2-го канала (№1) и 1-го канала (№2), три двухсекционных винтовых клеммника для выхода на 2-ой мотор (№3), для выхода на 1-ый мотор (№4) и для входа (№5).

Примечание.1 Установка винтовых клеммников не обязательна. С помощью тонкого монтажного многожильного провода можно подключить мотор и источник питания напрямую.

Принцип работы

Схема двухканального регулятора идентична электрической схеме одноканального регулятора. Состоит из двух частей (рис.2). Основное отличие: резистор переменного сопротивления замен на подстроечный резистор. Скорость вращения валов устанавливается заранее.

Примечание.2. Для оперативной регулировки скорости кручения моторов подстроечные резисторы заменяют с помощью монтажного провода с резисторами переменного сопротивления с показателями сопротивлений, указанными на схеме.

Материалы и детали

Понадобится печатная плата размером 30х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита толщиной 1-1,5 мм. В таблице 2 приведен список радиокомпонентов.

Процесс сборки

После скачивания архивного файла, размещенного в конце статьи, нужно разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора для термоперевода (файл termo2), а монтажный чертеж (файл montag2) – на белом листе офисной (формат А4).

Чертеж монтажной платы наклеивают к токоведущим дорожкам на противоположной стороне печатной платы . Формируют отверстия на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпасть. Производится цоколёвка транзистора КТ815. Для проверки нужно временно соединить монтажным проводом входы 1 и 2 .

Любой из входов подключают к полюсу источника питания (в примере показана батарейка 9 вольт). Минус источника питания при этом крепят к центру клеммника. Важно помнить: черный провод «-», а красный «+».

Моторы должны быть подключены к двум клеммникам, также необходимо установить нужную скорость. После успешных испытаний нужно удалить временное соединение входов и установить устройство на модель робота. Двухканальный регулятор мотора готов!

В АРХИВЕ представленные необходимые схемы и чертежи для работы. Эмиттеры транзисторов помечены красными стрелками.

Источник: volt-index.ru

Управление 12V кулерами при 24V БП

Подпишитесь на автора

Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.

Отписаться от уведомлений вы всегда сможете в профиле автора.

Изначально в моем принтере стояли вентиляторы на 24 вольта, ибо я решил не заморачиваться с двумя напряжениями и просто все (в том числе и Ардуино через DC-DC) запитал от блока питания 24V 400W.

Через некоторое время в качестве апгрейда на Али была куплена голова E3D Volcano, укомплектованная масюпусеньким пропеллером на 12В:

Честно говоря, мне как-то не верится, что этот кулер справится с охлаждением вулкана, который к тому же у меня запитан от 24В вместо родных 12 (разумеется, через ШИМ), но с другой стороны, у меня голова закреплена не в пластмассе, а напрямую алюминиевым кронштейном на рейл, что даст дополнительный теплоотвод.

Таким образом, необходимо было организовать согласование напряжений, причем не по хабрахабровски, вставляя резисторы, а нормально.

Тут мой взгляд упал на купленные по случаю на Али (что бы мы без китайцев делали?) микромодули DC-DC mini-360 по цене меньше 50 центов за штуку (потому и купил, что ‘дешево, и пускай полежат’;):

Обратите внимание на обведенную кружочком ногу. В лучших традициях китайской инженерии она висит в воздухе и никуда не выведена, хотя именно этой ногой можно управлять конвертором.

В результате родилась следующая конструкция:

Провод, идущий на 7ую ногу, подключается на любой свободный пин Ардуино, в конфиге вы указываете, что управление вентилятором идет с этого пина и освобождаете один из ключевых танзисторов на Ramps.

Таким же образом можно запитать вентиляторы для обдува, или например, светодиоды освещения.

На плате стоит микросхема MP2307. По даташиту у нее рабочее напряжение до 23 вольт. С другой стороны, раздел ABSOLUTE MAXIMUM RATINGS указывает входное напряжение до 26 вольт. Я протестировал на 24 вольта в течение часа на максимальных оборотах – температура микросхемы стабилизировалась где-то в районе 40 градусов. Несмотря на это, я слегка подкрутил свой блок питания до 23 вольт, хотя в принципе этого можно было бы и не делать. Но, как говорила одна монашка, натягивая презерватив на огурец, ‘Береженного Бог бережет’.

Другой момент – на некоторых платах вывод EN подключен через резистор к входу питания. Я бы советовал избавиться от этого резистора, заодно получите хорошую площадку для припайки провода.

Кстати, на этой же микросхеме собраны модули KIS-3R33S, но там нету удобного резистора, чтобы выставить на выходе 12 вольт. И я не уверен, что выходные электролиты там нормально отнесутся к повышенному напряжению на выходе. Ну и не вижу смысла морочиться из-за 50 центов.

Подпишитесь на автора

Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.

Отписаться от уведомлений вы всегда сможете в профиле автора.

Источник: 3dtoday.ru